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Abstract
We develop techniques which allow us to calculate the spectra of pinned charge
density waves with background current in one-dimensional space. We show that
in such systems the low-lying modes are always localized, and we compute their
spectral density and the localization length. We also show that as the energy is
increased, the modes delocalize in a way similar to that in the Hatano–Nelson
non-Hermitian quantum mechanics.

PACS numbers: 73.20.Fz, 63.50.+x, 71.45.Lr

1. Introduction

The problem of a quantum mechanical particle whose motion is governed by a random time-
independent Hamiltonian has been discussed in the literature for several decades. Because of
its relevance to the electrons’ motion in disordered conductors, the Hamiltonian which consists
of a kinetic energy and a random scalar potential is probably the most famous example of
such a problem. It is now well established that the wavefunctions of such Hamiltonians whose
energies lie within certain energy bands are localized, a phenomenon usually referred to as
Anderson localization [1]. A wealth of new types of behaviour was discovered once random
Hamiltonians constrained by certain symmetries were studied. For example, the most general
random Hamiltonian would be complex Hermitian. Constraining it to be real (in other words,
imposing time-reversal invariance) changes the localization properties of its wavefunctions.
An electron moving in a disordered conductor is described by a real random Hamiltonian.
Turning on a magnetic field makes the Hamiltonian Hermitian. This made the study of
the crossover between real Hermitian and complex Hermitian random Hamiltonians easily
accessible experimentally, and a subject of intense theoretical investigations [2].

Furthermore, it was discovered that a number of other symmetries can also be imposed
on random Hamiltonians, which change their behaviour yet again. Altogether, there are ten
symmetry classes of random Hamiltonians, distinguished by nine different constraints imposed
on them [3, 4].
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Yet other types of random Hamiltonians arise when they are constrained not by a symmetry
but by certain requirements their spectra must satisfy. The most prominent example of that
would be systems with bosonic excitations [5]. To be specific, consider an energy functional
E[φ(x)], where φ(x) is some function, which has the form

E[φ(x)] =
∫ L

0
dx

[
1

2

(
dφ(x)

dx

)2

+ h(φ(x), x)

]
. (1)

Here h(φ(x), x) is a random function of its two arguments, one of them being the value of
the function φ(x) at the point x, and the other being the point x itself. h can also be thought
of simply as a function of two independent variables, and in what follows we will sometimes
use the notation h(φ(x), x) = h(ϕ, x)|ϕ=φ(x). The precise form of the function h(ϕ, x) will
be discussed below.

Suppose φ0(x) is a minimum (local or global) of the functional E. We would like to
study the normal modes ψn of oscillations around that minimum. They are defined as the
eigenfunctions of the matrix of second derivatives of the functional E[φ(x)] at its minimum
φ(x) = φ0(x), or more precisely∫

dy
δ2E

δφ(x)δφ(y)

∣∣∣∣
φ(x)=φ0(x)

ψn(y) = εnψ(x).

Working out the functional derivatives results in the normal mode equation

− d2

dx2
ψn(x) + ∂2

φh(φ0(x), x)ψn(x) = εnψn. (2)

Here the notation ∂2
φh(φ0(x), x) is used to denote ∂2h(ϕ, x)/∂ϕ2|ϕ=φ0(x). Equation (2) has

to be supplemented by suitable boundary conditions. For definiteness we are going to take
ψn(0) = ψn(L) for some large L, although the results presented in this paper are largely
insensitive to the choice of boundary conditions.

Equation (2) contains random terms, therefore it is hopeless to try to solve it exactly.
However, in most applications we only need to calculate the average density of states and
localization length of equation (2). The average density of states is defined by

ρ(ε) = 1

N

〈
N∑

n=1

δ(ε − εn)

〉
,

where N is the total number of states and the angular brackets denote averaging over random
h. The localization length ξn, in case ψn is localized, is defined via the asymptotic behaviour

ψn(x) ∼ exp

(
−|x − x0|

ξn

)
, |x − x0| � ξn,

where x0 is the localization centre which itself depends on n. ξ can be thought of as a function
of ε as in ξ(ε) = ξn if ε = εn.

Equation (2) is a random Schrödinger-like equation, so it is tempting to conclude that
its density of states and localization length is given by a simple Anderson localization type
behaviour. Yet it is not equivalent to a particle moving in an arbitrary random potential.
∂2
φh(φ0(x), x) is a random function of x, but it is not an arbitrary random function. It is clear,

for example, that εn � 0 for all n ( just as the second derivative of a function at a point of its
minimum is always non-negative). This tells us that ∂2

φh(φ0(x), x), although random, has to
be constrained in such a way that all its eigenvalues are positive or equal to zero.

In most applications of equation (1), h(ϕ, x) is chosen to be a smooth function
of its first argument ϕ and a rough function of its second argument x. For example,
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h(ϕ, x) = A(x) cos(ϕ − χ(x)), where A(x) and χ(x) are random functions of x uncorrelated
at different x and χ(x) is uniformly distributed between 0 and π . This leads to the two-point
correlation function

〈h(ϕ, x)h(ϕ′, x ′)〉 = α cos(ϕ − ϕ′)δ(x − x ′).

Under this definition of h(ϕ, x), the problem described by equations (1) and (2) has been
extensively studied in the context of pinned charge density waves. We refer the readers who
would like to know more about charge density waves to [6] while their pinning by disorder
is discussed in the classic work [7]. Knowing the density of states and localization length
of equation (2) allows, for example, to calculate the ac conductance of the charge density
waves. This is why equation (2), which is sometimes referred to as Fukuyama–Lee equation
in the charge density waves context, has been extensively studied in the literature. It was first
deduced in [8, 9] that the density of states ρ(ε) of equation (2) is given by ρ(ε) = ε

3
2 if ε � εc

and if φ0(x) is a global minimum of the energy functional, equation (1), where εc ∼ α2/3 is
the crossover scale. If, on the other hand, φ0(x) is a local minimum of equation (1), then
ρ(ε) ∼ ε, ε � εc.

A more detailed approach to the problem specified by equation (2) was developed in [10].
It was shown in that work that the potential ∂2

φh(φ0(x), x) of the ‘Schrödinger’ equation (2)
can always be represented as

∂2
φh(φ0(x), x) = dV (x)

dx
+ V 2(x),

where V (x) is some new random function. As a result, equation (2) is equivalent to

H
(

ψn(x)

φn(x)

)
= ωn

(
ψn(x)

φn(x)

)
, (3)

where

H =
(

0 d
dx

+ V (x)

− d
dx

+ V (x) 0

)
, (4)

and ω2
n = εn. Now H is an example of a random Hamiltonian constrained by a symmetry

and can be solved by techniques developed in that context. The symmetry of H is usually
referred to as chiral symmetry. It is expressed by the relation σ3Hσ3 = −H, which holds
true for any random V (x) [3]. Here, σ3 is the usual Pauli matrix. The density of states and
localization properties of chiral random Hamiltonians are strikingly different from those of
Anderson Hamiltonians [11].

The full solution of equation (2), with the help of the mapping to equation (3),
demonstrated that there indeed exists the crossover energy scale εc. At εn � εc all the

eigenfunctions ψn(x) are localized with localization length ξn ∼ ε
− 1

2
c , which is independent

of n. At εn � εc, the eigenfunctions are still localized, but with the localization length which
increases with εn as ξn ∼ εn. The density of states at εn � εc is given by ρ(ε) ∼ ε− 1

2 .
Finally, the density of states at εn � εc is given by ρ(ε) ∼ ε

3
2 if φ0(x) is a global minimum of

equation (1) and by ρ(ε) ∼ ε if φ0(x) is a local minimum of equation (1).
In this paper, we would like to show that the same techniques which proved useful in

solving equation (2) can also be used to solve another related problem, which we formulate
below. Consider an equation

−j
d2φ

dx2
− γ

dφ

dx
+ dφh(φ(x), x) = 0, (5)

where j and γ are some parameters, and ∂φh(φ(x), x) = ∂h(ϕ, x)/∂ϕ|ϕ=φ(x). If γ = 0, then
this equation is equivalent to the minimization condition of the energy equation (1). If, on the
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f
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Figure 1. The eigenvalues εn of equation (6) lie on this curve in the complex plane.

other hand, γ > 0, then this defines a new problem. Equation (5) describes moving charge
density waves, or charge density waves with background current [12–14]. Normal modes of
oscillations of such pinned charge density wave are given by the equation[

−j
d2

dx2
− γ

d

dx
+ ∂2

φh(φ0(x), x)

]
ψn(x) = εnψn(x), (6)

where φ0(x) is a solution to equation (5), supplemented by the same boundary condition
ψn(0) = ψn(L). In this paper, we are going to present the solution to the problem defined by
equations (5) and (6).

The operator in the square brackets of equation (6) is non-Hermitian. As a result, the
eigenvalues εn do not have to be real. It is well known, however, that the eigenvalues of
equations of the type equation (6) always lie along one-dimensional curves in the complex
plane [15]. In this paper, we show that these curves take the shape depicted in figure 1. The
fork point εf cannot be found exactly. However, it is still possible to define the crossover scale
εc. All the states with energy less than εc have the same localization length ξ . As the energy is
increased past εc, the localization starts to grow and eventually diverges at εf (which is always
bigger than εc). The states corresponding to complex values of energy are delocalized.

We introduce the technique which allows us to compute εc and ξ . We calculate them in
the regime where γ /(jα)1/3 � 1 and find them to be εc = γ 2/4j and ξ = 2γ 2/α. We also
calculate the density of states along the part of the curve depicted in figure 1 which lies on the
real axis and find it to be ρ(ε) ∼ ε.

The rest of this paper is organized as follows. In section 2, we map the problem defined
by equation (6) to a random chiral Hamiltonian. In section 3, the localization length of normal
mode oscillations will be derived in the limit of large background current and in section 4
this result will be compared with the usual Larkin length of the problem. Section 5 contains
the calculation of the density of the low-lying states. Finally, in section 6 we discuss the
response of a pinned charge density wave with background current to an electric field using
the formalism developed here.

2. Mapping to a chiral Hamiltonian

The first step of the solution is to map equation (6) to a more tractable form of a random chiral
Hamiltonian. Following the general guidelines of [10], we treat equation (6) as the equation
of motion of a particle with coordinate φ, moving in time x, in the presence of friction forces
given by the γ term. We then pass from the Lagrangian to the Eulerian description of the
motion. This involves introducing the velocity function u(φ(x)) ≡ ∂xφ(x). As is standard
in hydrodynamics, u becomes a function of space φ and time x, regardless of the particular
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particle trajectory φ(x). The equation of motion, equation (5), acquires the form familiar from
fluid dynamics

j∂xu + ju∂φu + γ u = ∂φh(φ, x). (7)

The equation thus obtained is similar to the equation of motion of a one-dimensional fluid
without pressure, usually referred to as the Burgers equation. However, it also features the
γ u term, which can be interpreted as a kind of viscous friction. This friction term is different
from a more standard Navier–Stokes viscosity term −∂2u/∂φ2.

Performing a derivative on equation (7) with respect to φ results in

j∂x∂φu + j (∂φu)2 + ju∂2
φu + γ ∂φu = ∂2

φh. (8)

We define the gradient of the velocity along the solution to equation (5), φ0, as F(x) ≡
∂φu(φ0(x), x). F(x) can be related to h(φ, x) with the help of equation (8)

j
dF

dx
+ jF 2 + γF = ∂2

φh(φ0(x), x). (9)

Thus equation (6) becomes[
− d2

dx2
− γ

j

d

dx
+

dF

dx
+ F 2 +

γ

j
F

]
ψn = εn

j
ψn, (10)

or in a more symmetric form[
d

dx
+ F +

γ

j

] [
− d

dx
+ F

]
ψn = εn

j
ψn. (11)

The operator on the left-hand side of equation (11) is not Hermitian. This may be remedied
by using a trick due to Hatano and Nelson [16]. Writing

ψn(x) = exp

(
− γ

2j
x

)
ψ̃n(x) (12)

the equation becomes[
d

dx
+ F +

γ

2j

] [
− d

dx
+ F +

γ

2j

]
ψ̃n = εn

j
ψ̃n. (13)

Thus, we mapped our equation into an eigenvalue problem for a Hermitian operator. This
operator can also be rewritten in the form similar to equation (3),

H
(

ψ̃n(x)

φ̃n(x)

)
= ωn√

j

(
ψ̃n(x)

φ̃n(x)

)
,

where H is still given by equation (4), ω2
n = εn, and

V (x) = F(x) +
γ

2j
.

However, as argued by Hatano and Nelson, the transformation equation (12) is valid only as
long as ψ̃n decays asymptotically as exp(−|x|/ξ̃ ), with the localization length ξ̃ < 2j/γ .
For ψ̃n whose localization length obeys this condition, equation (11) is equivalent to
equation (13), and therefore, εn is real and positive. For other eigenfunctions ψ̃n whose
localization length is larger than 2j/γ , equation (13) is no longer equivalent to equation (11).

Note that the localization length ξ̃n of ψ̃n is related to the localization length ξn of ψn as
in

ξn =
(

1

ξ̃n

− γ

2j

)−1

, (14)

as long as ξ̃ < 2j/γ .
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3. The localization length

Random chiral Schrödinger equations of the form (13) have been investigated by Comtet,
Debois and Monthus [17]. It was determined that the important parameter for these equations
is ωc = √

j〈V (x)〉, and correspondingly εc ≡ ω2
c . For all wavefunctions whose energy

ωn < ωc, the localization length is constant and is given by ξ̃ = 1/〈V (x)〉. For ωn > ωc, the
localization length quickly increases, being asymptotically proportional to ω2

n.
The crucial test for our theory is, therefore, whether 〈V (x)〉 is bigger or smaller than

γ /2j . As we will see below, 〈V (x)〉 > γ/2j . As a result equation (13) is equivalent to
equation (11) and consequently to equation (6), at ε < εc. Thus, at ε < εc all the eigenvalues
of equation (6) are real and positive. On the other hand, there exist some εf > εc where the
localization length of ψ̃n becomes equal to 2j/γ . At that point, the wavefunctions ψn become
delocalized, in accordance with equation (14). At Re ε > εf , the eigenvalues of equation (6)
are no longer real and come in complex conjugate pairs. This justifies the picture presented in
figure 1.

In what follows, we proceed to calculate εc. In terms of V (x), equation (9) becomes

dV

dx
+ V 2 − γ 2

4j 2
= ∂2

φh(φ0(x), x)

j
. (15)

This equation has the form of a Langevin equation with random force given by ∂2
φh, whose

correlator is given by (see [5] for justification of ∂2
φh as a random white noise)〈

∂2
φh(φ0(x), x)∂2

φh(φ0(y), y)
〉 = αδ(x − y).

In accordance with the theory of Langevin equations, if

dV

dx
+ g(V ) = f (x)

with f (x) being uncorrelated at different values of x, 〈f (x)f (x ′)〉 = αδ(x − x ′), then the
probability P(v, x) = 〈δ(v − V (x)〉 of observing V (x) = v at the position x obeys the
Fokker–Planck equation

dP

dt
= ∂

∂v

[
α

2

∂

∂v
+ g(v)

]
P(v, x).

In the present case, we are interested in the probability of observing a particular value for
V (x) together with the probability that a particular solution φ0(x) of equation (5) is chosen.
The relevant quantity describing this joint probability is

P(v, x) =
〈
δ(v − V (x))

ρ(x)

〉
,

where ρ(x) is the density of solutions φ0(x) which in turn obeys the continuity equation

dρ

dx
+ ρV = 0.

As a result, we find the Fokker–Planck equation

dP
dx

= ∂

∂v

[
α

2j 2

∂

∂v
+ v2 − γ 2

4j 2

]
P + λvP.

Here λ = 1; however, we will keep the more general notation of λ for convenience at a later
point in the calculations.
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A common approach to the Fokker–Planck equations is to map them into the Schrödinger
equation with the help of

P = exp

[
−v3j 2

3α
+

vγ 2

4α

]
�.

This gives

−d�

dx
=

[
− α

2j 2

∂2

∂v2
+ U(v)

]
�. (16)

Here,

U(v) =
[

j 2

2α
v4 − γ 2

4α
v2 − v(1 + λ) +

γ 4

32αj 2

]
. (17)

The Feynman path integral formulation of the Schrödinger equation (16) allows us to find
the average of V using

�〈V 〉 =
∫
DV (x) e−S[V ]

∫ �

0 dxV (x)∫
DV (x) e−S[V ]

= d

dλ
log

∫
DV (x) e−S[V ]

∣∣∣∣
λ=1

, (18)

for � → ∞. Here, S[V ] is the imaginary time action which corresponds to the quantum
mechanics, equation (16),

S[V ] =
∫ �

0
dx

[
j 2

2α

(
dV

dx

)2

+ U(V )

]
. (19)

At large � the path integral equation (18) is dominated by its ground-state energy. The
average V may now be calculated as

〈V 〉 = − dE0

dλ

∣∣∣∣
λ=1

, (20)

where E0 is the quantum mechanical ground-state energy for a particle whose classical action
is given by equation (19) and whose Schrödinger equation reads[

− α

2j 2

d2

dv2
+ U(v)

]
� = E�.

If γ = 0, then the ground-state energy, together with its derivative with respect to λ, can
be estimated simply from dimensional analysis as α1/3/j 2/3, to give ωc ∼ α1/3/j 1/6. This
agrees with [10]. If γ > 0, then dimensional analysis is of no help, since ωc can now depend
on the dimensionless ratio γ /(jα)1/3. The only way to find ωc and thus the localization length
of the low-lying states is by finding the ground-state energy E0.

By a suitable rescaling v = yα1/3/j 2/3, Ẽ = Ej 2/3/α1/3, we can bring the Schrödinger
equation to the form[

−1

2

d2

dy2
+

1

2
(y2 − c2)2 − (1 + λ) y

]
� = Ẽ�, (21)

where

c = γ

2 (αj)
1
3

.
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In general, it is not possible to find the ground-state energy of this Schrödinger equation
exactly. We are going to find it only in the limit when c � 1. The potential in equation (21)
has two minima. The minimum at positive y is the global minimum and is located at

ymin = c +
(1 + λ)

4c2
+ O(c−5). (22)

The simplest approximation to the ground-state energy is to set it equal to the value of the
potential at the minimum. This is given by

Ẽ0,0 = −(1 + λ)c − (1 + λ)2

8c2
+ O(c−5).

To add quantum fluctuations to the problem, we have to consider the Schrödinger equation (21)
evaluated around the minimum, equation (22). Approximating the potential of equation (21)
by a quadratic potential around the point ymin we find the oscillator ground-state energy
to be

Ẽ0,qf = c +
3(1 + λ)

8c2
+ O(c−5).

In principle, the cubic and quartic term in the expansion of the potential around the minimum
also contribute to the ground-state energy, but these only have dependence upon λ at the
O(c−5) level and thus do not contribute to 〈V 〉 at lower orders.

Gathering the terms, it is seen that as a function of λ

〈V 〉 = −dE0

dλ
= − d

dλ
(Ẽ0,0 + Ẽ0,qf )

α
1
3

j
2
3

= γ

2j
+ α

(
λ − 1

2

)
1

γ 2
+ O(γ −5).

Finally, substituting λ = 1, we find

〈V 〉 = γ

2j
+

α

2γ 2
+ O(γ −5).

Therefore, at large γ the energy scale ωc is given by

ωc = γ

2
√

j
. (23)

We see that 〈V 〉 > γ/2j , and the localization length of the low-lying Hermitian states ψ̃n is
consequently smaller than j/γ . This allows us to deduce that equation (6) is indeed equivalent
to equation (13) at εn < εc. The localization length of ψn at εn < εc can be deduced from
equation (14) to be

ξ =
(

〈V 〉 − γ

2j

)−1

= 2γ 2

α
+ O(γ −1). (24)

The calculation presented here justifies figure 1 at large γ . In order to see that the
picture of low-lying localized states persist at all values of γ we need to show that 〈V 〉 is
always greater than γ /2j . This amounts to showing that in the Schrödinger equation (21) the
following relation always holds true:

〈y〉 ≡
∫

dy|ψ0(y)|2y = − dẼ0

dλ

∣∣∣∣
λ=1

> c. (25)

Here, ψ0(y) is the ground-state wavefunction of equation (21), at λ = 1. We do not know
how to show this analytically. We investigated equation (21) numerically. Figure 2 shows the
values of −dẼ0/dλ = 〈y〉, at λ = 1, plotted versus c. We see that equation (25) does seem to
hold.
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Figure 2. 〈y〉 in the ground state of equation (21) as a function of c. The dots represent 〈y〉
evaluated numerically at various values of c. The solid line is 〈y〉 calculated in the harmonic
approximation to the potential in equation (21). The dashed–dotted line represents the first two
terms of the perturbative calculation c + 1

8c2 . Finally, the dashed line is a straight line of slope 1,
which demonstrates that 〈y〉 > c.

4. The Larkin length

In the analysis of equation (5) it is customary to introduce the notion of Larkin length LLarkin.
LLarkin is defined as the size of a box in which the average 〈φ2〉 becomes of the order of 1.
Thus at distances bigger than LLarkin, φ0(x) becomes rough, while at shorter distances it can
be thought of as smooth. We are now going to see that in our problem the localization length
of low-lying states of equation (6) is of the order of Larkin length.

To calculate the Larkin length, we follow the procedure described in [12]. We consider
equation (5). Let us assume that φ is small and neglect the φ dependence of h. In Fourier
space, this equation of motion is

(iγ k + jk2)φk = −∂φh(0).

Thus,

〈|φk|2〉 = 〈∂φh(0)∂φh(0)〉
γ 2k2 + j 2k4

.

Now the Larkin length is defined as the value of LLarkin for which

1 ∼ 〈
φ2

0(x)
〉 =

∫ ∞

L−1
Larkin

dk

2π

α

γ 2k2 + j 2k4

∼ αLLarkin

γ 2
− jα

γ 3
tan−1(γLLarkin/j).

From the asymptotic form of tan−1 in the large-γ limit it is found that

LLarkin ∼ γ 2

α
+

π

2
jγ −1 − j 2αγ −4 + O(γ −7).

At leading order LLarkin turns out to be proportional to the localization length obtained above,
equation (24). This coincides with the behaviour of the pinned charge density waves without
the background current [10]. However, the localization length and the Larkin length have
different functional dependence on γ in lower orders.
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5. Density of states

In this section, we calculate the density of low-lying states for our problem. Due to the form
of the potential, equation (17), which does not contain a cubic term, the density of low-lying
states maybe easily calculated using the methods of [5]. This is not immediately obvious, so
in this section we will repeat the argument.

At energies below an energy of the order of 〈V 〉 the energy eigenvalues are real. Above,
the eigenvalues trace out a one-dimensional spectrum in the complex plane (figure 1). Let us
concentrate on low-lying states εn < εc, which are all real. To calculate their density of states
ρ(ε) we use the equivalence of equations (6) and (13) in this regime.

The integrated density of low-lying states can be found using the discussion in [5] as

N(ω) =
〈
δ

(∫ x2

x1

dx V (x) + a

)〉
, a = − log(ω),

with the average being over realizations of V (x). The density of states is then obtained from
ρ(ω) = dN/dω.

Through a standard representation of the δ-function

N(ω) =
〈∫ ∞

−∞

dα

2π
exp

(
iα

(∫ x2

x1

dx V (x) + a

))〉
,

and defining �(α) by

exp(−��(α)) =
〈
exp

(
iα

∫ x2

x1

dx V (x)

)〉
, (26)

with � = x2 − x1 the integrated density of states is

N(ω) =
∫ ∞

−∞

dα

2π
exp(iαa − ��(α)).

At large �,�(α) is independent of � as will be argued below. We assume in the following that
a certain value of � maximizes the probability of observing a fluctuation of size − log ω. This
is justified, since due to the form of the potential U(V ), equation (17), it is not very likely
to observe a very large negative fluctuation, and it is more likely to see a smaller negative
fluctuation, which exists over a longer interval of x. We now approximate N(ω) by its value
at the saddle point, determined from

ia − �
∂�

∂α
= 0,

where α = α0(�) at the saddle point. Thus, N(ω) ∼ exp(iaα0 − ��(α0(�))) and the
maximization with respect to � results in

0 = ia
∂α0

∂�
− �(α0(�)) − �

∂�

∂α

∂α0

∂�

= −�(α0(�)). (27)

Defining β0 ≡ −iα0, it is seen that N(ω) ∼ ωβ0 where β0 should be chosen such that �(β0)

vanishes.
Making use of our results from section 3 where the Schrödinger equation (16) was found

with the potential taking the form equation (17), equation (26) becomes

exp(−��(β0)) =
∫
DV (x) exp (−S[V ]) exp

( − β0
∫ x2

x1
dx V

)
∫
DV (x) exp (−S[V ])

, (28)
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with S[V ] given by equation (19). At large lengths �, the path integrals are dominated by the
ground-state energy, i.e.,

exp(−��(β0)) = exp(−�E0{−1 − λ + β0})
exp(−�E0{−1 − λ}) ,

where the notation E0 {s} represents the ground state of the Schrödinger equation (16) with
the potential equation (17) where s is substituted in place of 1+λ. Furthermore, since all terms
except the linear are invariant under V (x) → −V (x), we see that E0 {s} = E0 {−s}. Thus,
β0 = 2 + 2λ obviously solves equation (27). Note that the above argument hinged on the fact
that the potential U(V ) does not contain a cubic term. We conclude that with λ = 1

N(ω) ∼ ω4 = ε2,

and

ρ(ω) ∼ ω3, ρ(ε) = dN(ε)

dε
∼ ε. (29)

We would like to compare this with the result obtained for the pinned charge density wave
problem with γ = 0. There ρ(ω) ∼ ω4 if φ0 is a global minimum of the energy functional,
equation (1), and ρ(ω) ∼ ω3 if the minimum is local. At γ > 0, however, equation (5) is
no longer a minimization condition of any functional and the notion of global minimum no
longer exists.

6. Driven pinned charge density waves with background current

Consider a pinned charge density wave driven by an electric field at frequency ω0 (see, e.g.,
[18] for a review),

ν
dφ

dt
− j

d2φ

dx2
− γ

dφ

dx
+ ∂φh(φ, x) = E(x) cos(ω0t).

To find the linear response to a small electric field, we write φ = φ0(x)+ψ(x, t), where φ0(x)

satisfies equation (5), and find[
ν

d

dt
− j

d2

dx2
− γ

d

dx
+ ∂2

φh(φ0(x), x)

]
ψ(x, t) = E(x) eiω0t .

The solution to this equation can now easily be found

φ(x, t) = φ0(x) + eiω0t
∑

n

∫
dy E(y)

ψn(x)ψn(y)

iνω0 + εn

,

where ψn and εn are defined in equation (6). The current carried by the charge density wave
is I ∼ ∂ψ

∂t
, and is thus given by

I (x) ∼ iω0 eiω0t
∑

n

∫
dy E(y)

ψn(x)ψn(y)

iνω0 + εn

.

The properties of ψn, εn found in this paper help to determine the response of the charge density
wave to a small external electric field. For example, if the electric field E(x) is uniform in
space, we can use the results of this paper which show that at εn < εc, the wavefunctions
ψn(x) are all localized with the same localization length ξ . Therefore,

∫
dx ψn(x) ∝ √

ξ

and is independent of n, as long as εn < εc. On the other hand, the wavefunctions which
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correspond to large Re εn are delocalized and oscillate fast so that
∫

dx ψn(x) goes to zero
with increasing n quickly. Therefore, the current reduces to

I ∼ iω0 eiω0t

∫ εc

0
dερ(ε)

1

iνω0 + ε

∼ iω0 eiω0t

[
εc − iνω0 log

εc + iνω0

iνω0

]
, (30)

where ρ(ε) ∼ ε, as found in this paper, equation (29).

7. Conclusions

We have demonstrated how the problem of normal mode oscillations of the one-dimensional
pinned charge density waves with background current may be solved by mapping into chiral
random Hamiltonians. Using the methods of Comtet et al [17] we have determined the
localization length ξ of the low lying normal modes. This localization length turns out to be
proportional to the Larkin length of this system. The density of the lowest lying states has also
been obtained, giving the power law ρ(ω) ∼ ω3. This result differs from the result ρ(ω) ∼ ω4

of [8, 10] due to the fact that turning on background current removes the notion of a global
ground state.
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